Cách tính tích vô hướng của hai vectơ (hay, chi tiết).

admin

Bài viết lách Cách tính tích vô vị trí hướng của nhị vectơ với cách thức giải cụ thể hùn học viên ôn tập dượt, biết phương pháp thực hiện bài xích tập dượt Cách tính tích vô vị trí hướng của nhị vectơ.

Cách tính tích vô vị trí hướng của nhị vectơ (hay, chi tiết)

A. Phương pháp giải

Quảng cáo

Trong không khí, cho tới nhị vectơ uv đều không giống 0 . Tích vô vị trí hướng của nhị vectơ uv là một trong những, kí hiệu là u. v, được xác lập vị công thức:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Trong tình huống u = 0 hoặc v = 0, tớ quy ước u. v = 0

B. Ví dụ minh họa

Ví dụ 1: Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Khi cơ cos(AB; DM) vị :

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Quảng cáo

Hướng dẫn giải

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Giả sử cạnh của tứ diện là a.

Tam giác BCD đều ⇒ DM = (a√3)/2.

Tam giác ABC đều ⇒ AM = (a√3)/2.

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn B.

Ví dụ 2: Cho tứ diện ABCD đem AB = AC = AD và ∠BAC = ∠BAD = 60° . Hãy xác lập góc thân thiện cặp vectơ ABCD ?

A. 60°               B. 45°               C . 120°               D. 90°

Hướng dẫn giải

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn D

Ví dụ 3: Cho hình chóp S.ABC đem SA = SB = SC và Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết. Hãy xác lập góc thân thiện cặp vectơ SCAB ?

A. 120°               B. 45°               C. 60°               D. 90°

Hướng dẫn giải

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn D

Quảng cáo

Ví dụ 4: Cho hình chóp S.ABC đem SA = SB và CA = CB. Tính số đo của góc thân thiện hai tuyến đường trực tiếp chéo cánh nhau SC và AB

A. 30°               B. 45°               C. 60°               D. 90°

Hướng dẫn giải

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Xét:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Vậy SC và AB vuông góc với nhau

Chọn D

Ví dụ 5: Cho hình chóp S.ABC đem AB = AC và ∠SAC = ∠SAB . Tính số đo của góc thân thiện hai tuyến đường trực tiếp chéo cánh nhau SA và BC

A. 30°               B. 45°                C. 60°               D. 90°

Hướng dẫn giải

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Vậy SA ⊥ BC

Chọn D

Ví dụ 6: Cho tứ diện ABCD. Chứng minh rằng nếu như

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết thì AB ⊥ CD , AC ⊥ BD, AD ⊥ BC. Điều ngược lại chính không?

Sau đó là điều giải:

Bước 1:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

⇔ AC ⊥ BD

Bước 2: Chứng minh tương tự động, kể từ AC.AD = AD.AB tớ được ADBCAB.AC = AD.AB tớ được ABCD

Bước 3: trái lại chính, vì như thế quy trình minh chứng ở bước 1 và 2 là quy trình thay đổi tương đương

Bài giải bên trên chính hoặc sai? Nếu sai thì sai ở đâu?

A. Sai ở bước 3

B. Đúng

C. Sai ở bước 2

D. Sai ở bước 1

Quảng cáo

Hướng dẫn giải

Chọn B

Bài giải đúng

C. Bài tập dượt vận dụng

Câu 1: Cho tứ diện ABCD đem AC = (3/2)AD, ∠CAB = ∠DAB = 60°, CD = AD. Gọi α là góc thân thiện AB và CD. Chọn xác minh đúng?

A. cosα = (3/4)                B. α = 60°                C. α = 30°                D. cosα = 1/4

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn D

Câu 2: Cho tứ diện ABCD đem AB = AC = AD và ∠BAC = ∠BAD = 60°, ∠CAD = 90°. Gọi I và J theo thứ tự là trung điểm của AB và CD . Hãy xác lập góc thân thiện cặp vectơ ABIJ ?

A. 120°                B. 90°                C. 60°                D. 45°

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Xét tam giác ICD đem J là trung điểm đoạn CD ⇒ IJ = (1/2)(IC + ID)

Tam giác ABC đem AB = AC và ∠BAC = 60° nên tam giác ABC đều ⇒ CI ⊥ AB    (1)

Tương tự động, tớ đem tam giác ABD đều nên DI ⊥ AB    (2)

Từ ( 1) và (2) tớ đem

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn B

Câu 3: Cho hình chóp S. ABCD đem lòng là hình vuông vắn ABCD cạnh vị a và những cạnh mặt mũi đều vị a. Gọi M và N theo thứ tự là trung điểm của AD và SD. Số đo của góc (MN ; SC) bằng

A. 45°                B. 30°                C. 90°                D.60°

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Do ABCD là hình vuông vắn cạnh a ⇒ AC = a√2

Ta đem : AC2 = 2a2= SA2 + SC2

⇒ tam giác SAC vuông taị S.

Từ fake thiết tớ đem MN là đàng tầm của tam giác DSA ⇒ MN = (1/2).SA

Khi cơ

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn C

Câu 4: Cho hình lập phương ABCD.EFGH đem cạnh vị a. Tính AB.EG

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Ta có: EGCA là hình bình hành nên EG = ACAB.EG = AB.AC

Mặt không giống AC = AB + AD ( quy tắc hình hộp) .

Suy ra

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn B

Câu 5: Cho hình lập phương ABCD.A1B1C1D1 đem cạnh a. Gọi M là trung điểm AD. Giá trị B1M.BD1 là:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn A

Câu 6: Cho tứ diện đều ABCD. Số đo góc thân thiện hai tuyến đường trực tiếp AB và CD bằng:

A. 60°                B. 30°                C. 90°                D. 45°

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

+ Gọi M là trung điểm của CD

+ Tam giác ACD và tam giác BCD là tam giác đều ( vì như thế ABCD là tứ diện đều) đem AM ; BM là hai tuyến đường trung tuyến ứng với cạnh CD nên mặt khác là đàng cao.

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Suy đi ra ABCD nên số đo góc thân thiện hai tuyến đường trực tiếp AB và CD vị 90°.

Chọn C

Câu 7: Cho tứ diện ABCD đều cạnh vị a. Gọi O là tâm đàng tròn xoe nước ngoài tiếp tam giác BCD. Góc thân thiện AO và CD vị từng nào ?

A. 0°                B. 30°                C. 90°                D. 60°

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Câu 8: Cho nhị vectơ ab thỏa mãn: Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết. Gọi α là góc thân thiện nhị vectơ ab. Chọn xác minh đúng?

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Câu 9: Cho tứ diện ABCD. Tìm độ quý hiếm của k tương thích thỏa mãn:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

A. k = 1                B. k = 2                C. k = 0                D. k = 4

Lời giải:

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn đáp án C

Câu 10: Trong không khí cho tới tam giác ABC đem trọng tâm G. Chọn hệ thức đúng?

A. AB2 + AC2 + BC2 = 2.(GA2 + GB2 + GC2)

B. AB2 + AC2 + BC2 = GA2 + GB2 + GC2

C. AB2 + AC2 + BC2 = 4.(GA2 + GB2 + GC2)

D. AB2 + AC2 + BC2 = 3.(GA2 + GB2 + GC2)

Lời giải:

Cách 1

Ta có

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Tương tự động tớ suy đi ra được GA2 + GB2 + GC2

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Cách tính tích vô vị trí hướng của nhị vectơ hoặc, chi tiết

Chọn đáp án D.

D. Bài tập dượt tự động luyện

Bài 1. Cho tam giác ABC đều cạnh a đem đàng cao AM. Tính những tính vô hướng AB.AC,AM.BC

Bài 2. Trong mặt mũi bằng phẳng tọa phỏng cho tới nhị vectơ u=0;5,v=3;1. Tính tích vô phía thân thiện nhị vectơ bên trên.

Bài 3. Cho hình vuông vắn ABCD cạnh a. Tính tích vô phía sau: AB.AC,AB.BD.

Bài 4. Cho 2 vectơ a,b vừa lòng a=1,b=2,a2b=15. Tính a,b.

Bài 5. Cho hình chữ nhật ABCD, M tùy ý. Chứng minh rằng:

a) MA2 + MC2 = MB2 + MD2;

b) MA.MC=MB.MD.

Bài tập dượt tự động luyện Hai vecto nhân nhau

Bài 1. Cho nhị vectơ a,b không giống vecto ko vừa lòng a.b=a.b. Tính góc thân thiện nhị vec tơ a,b.

Bài 2. Cho nhị vectơ a,b. lõi Cho nhị vectơ a=2,b=3a,b=30°. Tính a+b.

Bài 3. Cho tam giác ABC đem ABC^=30°, AB = 5, BC = 8. Tính BABC.

Bài 4. Cho hình vuông vắn ABCD cạnh 2a. Tính ABAC.

Bài 5. Cho tam giác vuông cân nặng ABC có  AB = AC = a. Tính ABAC.

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài xích giảng powerpoint, đề đua, sách giành riêng cho nghề giáo và gia sư giành riêng cho cha mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài tương hỗ ĐK : 084 283 45 85

Đã đem ứng dụng VietJack bên trên điện thoại cảm ứng thông minh, giải bài xích tập dượt SGK, SBT Soạn văn, Văn kiểu, Thi online, Bài giảng....miễn phí. Tải ngay lập tức phần mềm bên trên Android và iOS.

Theo dõi công ty chúng tôi không lấy phí bên trên social facebook và youtube:

Nếu thấy hoặc, hãy khích lệ và share nhé! Các phản hồi ko phù phù hợp với nội quy phản hồi trang web có khả năng sẽ bị cấm phản hồi vĩnh viễn.


Giải bài xích tập dượt lớp 11 sách mới nhất những môn học